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The flow of conducting fluids in circular pipes under 
transverse magnetic fields 

By J. A.  SHERCLIFF 
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SUMMARY 
The flow rate of liquid metals is commonly measured by 

electromagnetic flowmeters. In these the fluid moves through 
a region of transverse magnetic field, inducing a potential 
difference between two electrodes on the walls of the pipe. 
The ratio of signal to flow rate is dependent on the velocity 
profile, and this is affected by electromagnetic forces. 

In  this paper the ultimate steady velocity profile and its 
associated pressure gradient and induced potential are calculated 
for the case of laminar flow in a circular pipe whose walls are 
conducting but without contact resistance. Laminar flow is 
encouraged by a transverse field. When the fluid conductivity 
and field strength are sufficiently high, boundary layers occur 
with a thickness inversely proportional to normal field intensity. 
The induced potential difference is then 0.926 of the value 
corresponding to the case of uniform velocity if the walls are 
non-conducting. 

The distance the fluid must travel after entering the transverse 
field before the steady state is reached is next estimated by a 
Rayleigh approximation. The inlet velocity is taken to be uniform 
and effects which occur at the edge of the field are neglected. 
The process falls into two stages, first a boundary-layer growth 
and then an adjustment of the velocity away from the walls, 
occupying a much greater length of pipe. The entry length is 
shorter than it is in the case of flow in a rectangular pipe, but is 
still too long for appreciable distortion of the velocity profile to 
occur within practical flowmeters except at low flow rates. The 
pressure drop associated with the adjustment of the velocity 
profile is found to be independent of field strength, if this is 
high, and about one-eighth of the drop which occurs in the 
non-conducting case. 

Experiments are described in which steady-state pressure 
gradients and induced potential differences were measured in 
mercury flowing along Perspex pipes of 0.5 and 0.25 in. bore 
in transverse fields up to 14500 gauss. The results confirmed 
the steady-state theory within the limitations of experimental 
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accuracy and the assumption in the theory of high conductivity 
and an intense field. The  experiments also covered the entry 
region in many cases, and showed that the theoretical entry 
lengths were correct in order of magnitude but over-estimated. 
However, the exact entry condition was uncertain, and steady 
readings were difficult to obtain in the entry region. 
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1. INTRODUCTION 
T h e  rate of flow of a liquid may be measured by passing it along a pipe 

under a transverse magnetic field. The  potential difference induced between 
two electrodes situated at the ends of a diameter of the pipe perpendicular 
to  the flow and to the field may then be used to indicate the flow rate. 

T h e  ratio of the induced potential difference to the flow rate is affected 
by several factors, including the conductivity of the pipe walls and the form 
of the velocity profile. If the pipe is circular, the induced potential difference 
for a given flow rate is insensitive to the form of the velocity profile, provided 
the velocity is dependent only on distance from the axis of the pipe (Kolin 
1945). This is usually the case for laminar or turbulent flow in the absence 
of upstream disturbances. If the profile departs from radial symmetry, 
the ratio of potential difference to flow rate can vary very widely (Shercliff 
1954, 1955). 

If the liquid is a good conductor and the magnetic field is sufficiently 
strong, the velocity profile can be appreciably distorted by electromagnetic 
forces (Hartmann 1937, Shercliff 1953), and the induced potential seriously 
affected. This can occur when electromagnetic flowmeters are used with 
mercury or liquid sodium. 

T h e  full distortion of an entry profile by a transverse field takes place 
over an entry length, which may be large or small in comparison with the 
distance the fluid traverses between the onset of the transverse field and 
the electrodes. The  transverse field cannot have an abrupt edge, but 
nevertheless may change rapidly from negligible proportions to a high 
uniform intensity. 

This paper examines theoretically the steady state of laminar flow in 
a circular pipe under a transverse field and, by means of a Rayleigh 
approximation, the entry length necessary to achieve it. Experiments are 
described which support the theoretical conclusions. 

There is considerable interest in laminar flow since it persists at high 
Reynolds numbers in the presence of a transverse field (Murgatroyd 1953, 
Lock 1955). The  experiments described include cases of laminar and 
turbulent flow. 

I n  addition to the effect of a uniform transverse field on the velocity 
profile, there is another distorting effect due to secondary currents where 
the fluid enters the region of transverse field. This effect is ignored in the 
present analysis. 
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2. GOVERNING EQUATIONS 

As figure 1 shows, we select Cartesian axes (x,y, z )  such that the z-axis 
lies along the axis of the pipe, and the x-axis is parallel to the imposed 
uniform field No existing outside the pipe. 

Figure 1. Axes and electrodes. 

Various authors (e.g. Bullard 1955) have derived the basic equations 
for the motion of conducting fluids, pointing out that the displacement 
current and the convection of charges are negligible. In electromagnetic 
units Maxwell’s equations therefore become 

curiE = -paH/& (1) 
and curlH = 4 ~ j ,  (2) 
in which E, H and j are the electric field, magnetic field and current density 
vectors respectively, and p is the permeability of the fluid. Ohm’s law 
requires that 

in which v is the fluid velocity and CT is the fluid conductivity. 
dynamical equation is 

in which p, p and 7 are the fluid pressure, density and viscosity respectively. 
We assume that p is constant, and p is unity in both the fluid and the pipe 
walls. Consequently 

j = ~ ( E i - p v x H ) ,  (3) 
The 

pj x H + yV2v - gradp = p(av/at + (v . grad)v), (4) 

divv = 0, and divH = 0. (5) 
For the motion of fluid in a straight pipe under a uniform transverse 

field, where conditions may vary in time but not in the z-direction (apart 
from the pressure gradient), the equations become linear in the unknown 
quantities. Differentiation of (4) with respect to z shows that grad(ap/az) 
vanishes, and hence that ap/az is a function of time only. It is compatible 
with the above equations, and with the boundary conditions, for vz,vT,  
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and Hy to vanish and H ,  to have the constant value H,,. Equations (1) 
to ( 5 )  then reduce to two equations in the unknown components H ,  and v, : 

V ~ H ,  + 4 T p 0 ~ 0  av,/ax = 4Tpa arr,/at ( 6 )  

and qv2v, + (pf&/4T) aH,/ax = apjaz f p  av,/at. (7) 
The Laplacian operators comprise two derivatives only. 

The estimation of the entry length €or velocity-profile distortion to 
occur after entry into a transverse field is a non-linear problem, as it stands. 
There is, however, an obvious analogy with the above linear case, in which 
there is variation with time instead of with 2. We should therefore expect 
results of the right order if we calculate settling times in the linear problem, 
and convert these to entry lengths by multiplying by vo, the mean velocity 
of flow in the pipe, which is necessarily constant. The variables z and t 
will be measured from the onset of the transverse field. 

The equations ( 6 )  and (7) can be expressed non-dimensionally by 
means of the substitutions 

v = v,/v~, h = ~ , / 4 n ~ ~ ( 0 q ) l / z ,  P = - (aZ/qv,) ap/ax, 
X = x/a, Y = y/a ,  T = $/pa2, 

M = pHoa(o/y)1’2, and ,B = 4 ~ p q / p ,  
where a is the internal radius of the pipe. We then have 

Ah + M a v / a x  = (8) 

and Av+Mah/aX+ P = 6, ( 9 )  
in which A = a2/aX2+a2/aY2, and a dot denotes differentiation with 
respect to T .  

The dimensionless fluid property /3 is of the order of for liquid 
metals. We shall therefore neglect the p-term in (8). This may be shown 
to be justified except at unusually large values of M ,  which is of the order 
of lo2 in practical flowmeters. The role of h is now limited to that of a 
current stream-function, since 

j, = - v  (5 $1/2 ahlax, and j ,  = V,(W+’~ ahlay. (10) 
In view of the interest in flowmeters, it is necessary to consider the 

electric potential V induced by the motion. This potential exists, because 
neglecting h implies that curl E is negligible. Then E = -grad V ,  and 
from (3) it follows that 

It is convenient to express the flowmeter output VIP, measured between 
the electrodes X and Y (figure l),  in terms of a sensitivity S, where 

This takes the value unity for uniform or radially-symmetric velocity 
profiles in a non-conducting circular pipe (Kolin 1945). 

a Vjay = pHo V ,  - j&. (11) 

S = Vx,/2pHo aoo. (12) 
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Spatial boundary conditions 
The 

other condition concerns the magnetic field and potential. In  the absence 
of any contact resistance between the fluid and the walls, the potential is 
everywhere continuous. Also H, and h must be continuous at the fluid-wall 
interface and zero at the exterior of the walls. This secures continuity of 
current flow between the fluid and the walls, and precludes the flow of 
current outside the walls. Any voltage measuring device would take a 
negligibly small current. 

From (10) it follows thatj,, the total wall current per unit length of pipe, 
is equal to (~r)) l ’~v,  h, in which h is taken at the fluid boundary. If as and an 
indicate distances along the boundary and inward normal respectively, as 
shown in figure 2, and we assume that the wall has conductivity a, and 

One obvious condition is that vz and v shall vanish at the wall. 

s 

Figure 2. Portion of wall. 

thickness w (< a), then -jo/woo = (aV/as)/a, Y being in the wall or in 
the fluid at the wall. At the wall, v vanishes and - u grad V = curl H/4w, 
and hence 8Vjas = - (q/~)~/~v,8lz/8n.  Eliminating aV/as and j,, we see 
that at the fluid boundary 

the other spatial boundary condition, if contact resistance is negligible. We 
shall write c for wu,,/aa, a dimensionless quantity. 

In all that follows, complete symmetry in the x and y axes will prevail, 
with the result that v is even in X and Y,  and that h is odd in X and even 
in Y. 

3. THE STEADY STATE SOLUTION 

In an earlier paper (ShercliiT 1953), (6)  and (7) were solved for the case 
of steady flow in a rectangular channel with non-conducting walls, It 
was found that, when M is large, a core of uniform velocity occurs together 
with boundary layers at the walls. We should therefore expect similar 
behaviour in a circular pipe with thin conducting walls, the case which ie 
now analysed. 

We make the following assumptions. 
(i) M is large in comparison with unity. 
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(ii) The  boundary layer thickness is much smaller than the pipe radius, 
so that all variables may be treated locally as functions only of the 
distance an from the wall. 

(iii) P is of the same order as Mv, as in the rectangular case, when 
A4 is large. 

(iv) I n  the core, 4 v  is negligible in (9), signifying that viscous forces 
are negligible. 

P is here a constant, and v is of order unity. 

The boundary layer region 
The  application of assumption (ii) to (8) and (9) for a point on a radius 

vector inclined at an angle 0 to the x-axis (see figure 2) yields the equations 

(14) h” - mu‘ = v” - mh’ + p = 0, 

in which m = McosO, and dashes denote differentiations with respect to n. 
T h e  boundary conditions are that v = 0 and h = ch’ when n = 0, and 
that v and h must become relatively steady outside the layer, approaching 
the local core values v, and h,. The solution is 

v = v,{l - exp( - mn)},  (15) 

h = h(0) - v + Pnlm. (16) 

T h e  boundary-layer thickness is of the order of l /m, which is proportional 
to the reciprocal of the normal field intensity. The  last term in (16) is 
negligible except where 0 approaches $r, by virtue of assumption (iii) 
and because n is smaller than the boundary-layer thickness. Thus the 
pressure forces in the boundary layers are negligible, except where 0 
approaches in.  Equation (16) now gives h = h(0) - v,{l - exp( - mn)}, and 
the condition (13) requires that h(0) = -ccmv, = -vII,cMcosO. It follows 
that the total currents towards X per unit length of pipe are (uq)1/2v0(hc - h,,), 
which is equal to - ( ~ q ) ~ h ,  vc, in the boundary layer, and - ( U ~ ) ~ ’ ~ T J , ,  v,cMcos 8 
in the wall. The  current in the layer is proportional to the core velocity, 
because the wall shear stress, proportional to (core velocity)/(layer thickness) 
and hence to (core velocity) x (normal field intensity), is balanced by the 
magnetic force on the layer, proportional to (current in layer) x (normal 
field intensity). 

The core region 
From assumption (iv) we have ah,/aX+ P j M  = 0, and hence 

h, = - PX/M,  since h, is odd in X .  This indicates that the current 
density in the core is uniform and parallel to the y-axis, and equal to 
Pvo(cn))l’Z/Ma. The electromagnetic force just balances the pressure 
gradient. Also, 4h, vanishes, and (8) shows that, in the core, v, = v,( Y ) ,  
a function of Y only. The  current in the core must all return in the two 
boundary layers and walls, as shown in figure 3. Across any section AB, 
remote from X or Y,  the total core current per unit length of pipe is 
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2X0 Pvo(q)l’2/M, in which X ,  = (1 - Y2)li2, if we neglect the boundary-layer 
thickness in comparison with the length 2X0 of AB. Continuity of current 
flow, or of h, demands that PX,/M = v,(l + CMCOS e), and hence that 

the required function of Y. Equation (17) ceases to be valid as Y approaches 
- + 1. 

Y O  

CONDUCT~NG wn 

Figure 3 .  Current flow in walls, boundary layers and core. 

The core velocity is not determined by local dynamical conditions, but 
indirectly by means of the current distribution. We may note in passing 
that when the walls are conducting, there is a downstream electromagnetic 
force on them with a corresponding net upstream force on the fluid. The 
pressure gradient has to counteract this as well as the viscous shear forces 
at the wall. When the walls do not conduct, there is no net electromagnetic 
force on the fluid. In  neither case does the motion produce a force on the 
magnet supplying the transverse field, if edge effects are excluded. 

I t  is now appropriate to examine some of the earlier assumptions. 
Equation (17) shows that Av, is of the order of PIM, and is negligible in (9), 
except when Y approaches rfr 1. The boundary-layer thickness is small 
except where 0 approaches 3.r. Obviously, the approximate treatment of 
the core and boundary layers fails near X and Y ,  but we assume that the 
solution is approximately valid elsewhere when‘M is large and the obscure 
regions are small. 

Equation (17) is compatible with assumption (iii) provided cM is of 
the order of unity or less, and c is of the order of 1/M or less. For sodium 
flowing in a stainless steel pipe with reasonably thin walls, this condition 
is satisfied. The quantity cM is independent of the inside diameter of the 
pipe, and measures the relative conductivities of wall and boundary layer. 
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When cM is larger, the pressure gradient becomes important in the boundary 
layers, and the wall and core currents increase until the normal currents 
in the boundary layers become comparable with the tangential currents. 
Taking h as a function of n alone implies neglecting the normal currents. 

Since the boundary layers are small, we may integrate (17) over the 
cross-section and relate P to the mean velocity vo. This gives the relation 

(1 +0.883~M-O*019(cM)~+ ...), (18) 9 - -  3rpHO v , ( u ~ ) ~ ' ~  
a- 8a 

- 

which is nearly linear in cM. 
The potential distribution may be found to the same accuracy from (1 l), 

in which pHo vJ( j,/u) is of the order of M. We therefore neglect j,/u and 
integrate along X Y ,  assuming that no significant contribution to V,, 
comes from the small obscure regions where vz and j ,  must be small. The 
variation of S with cM is shown in figure 4. When the walls are non- 
conducting, c vanishes and S = 39/32 = 0.926. Increasing the wall 
conductivity increases S, owing to the change in the velocity profile. Any 
decreasing tendency due to the short-circuit paths provided by the walls 
was neglected when jJa was omitted from (1 1). 

Figure 4. The effect of wall conductivity on sensitivity. 

For low values of M ,  (8) and (9) may easily be solved in polar coordinates 
In the steady state, to yield solutions in series of ascending powers of M .  

the sensitivity is given by a series which begins with the terms 

s=-- -  "( - )+ .... 
l + c  576 1+3c 

4. THE ENTRY PROBLEM 

The solution of (8) (less the /3-term) and ( 9 )  is now considered for the 
case of a circular pipe with non-conducting walls, where the initial velocity 
is uniform and equal to vo. It is not possible to impose an initial condition 
on h, since it is determined by (8). The spatial boundary conditions are 
that a and h shall vanish at the walls. 
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I n  order that the linear time-dependent case may be analogous to the 
original problem of entry into a region of transverse field, we must also 
impose the condition that vo and the integral of v over the pipe cross-section 
are constant. 

It has been shown (Shercliff 1956) that when A4 is large and the fluid 
is flowing between parallel planes perpendicular to the field, a uniform 
entry-profile adjusts to its steady state in a dimensionless time T of the 
order of 1/&12. T h e  dimensional time is of the order of p/p2Hio, and the 
distance between the planes is irrelevant since the boundary-layer thicknesses 
are small in comparison. The  settling process in this case simply involves 
the growth of boundary layers, the core velocity being virtually unaffected. 

We should expect settling times for a circular pipe to be of the same order 
as for a square one, although somewhat less since the regions where the 
boundary layers are thick are smaller. For square pipes the dimensionless 
settling time is of the order of l /M (Shercliff 1956). 

T h e  change from a uniform initial velocity in a circular pipe to the 
final steady profile, as already discussed, would be expected to fall into 
two stages as follows. 

(a )  During the first stage, lasting for a dimensionless time of the order 
of 1/M2, thin boundary layers are created as in the parallel-plane case, the 
core velocity being barely affected. Initially, no currents flow until viscous 
forces alone have produced a very small boundary layer. Subsequently, 
electromagnetic forces restrict the development of the layer to a thickness 
proportional to the reciprocal of the normal field intensity. 

(b )  I n  the second stage, occupying a much longer time of the order of 
l/M, the core profile is changed by electromagnetic forces to its final form, 
the boundary layer thickness being unchanged. 

The  motion in the regions near X and Y where the simple boundary 
layer theory fails is again left obscure on the assumption that the results 
are not seriously affected. 

For both stages we shall make the following assumptions suggested by 
the steady state solution. 

(i) A4 is large in comparison with unity. 
(3) T h e  boundary layer thickness is always much smaller than a, so 

that all variables may be treated locally as functions only of T and n. 
(iii) h and P/M are, at most, of the order of unity throughout. P may 

be related to the shear stresses at the walls by applying Green’s theorem 
to the integral of (9) over the cross-section or the part in the first qu’adrant. 
This  gives 

*n av PT 
- d e =  - .  1, an 4 

(iv) I n  the core, Av, is negligible in (9), and Ah, is of the order of unity. 
T h e  solution proves to be compatible with these assumptions except near X 
and Y. From (8) (less the p-term), it follows that av,/aX is negligible and 
v, is a function of Y and T only. We may note that this is true initially 



Flow of conducting fluids in pipes under transverse fields 653 

and finally. 

and we see that ah,/aX is also independent of X .  Since h is odd in X ,  
%,/ax = h,/X = h,/X,, the value h, referring to the edge of the thin 
boundary layer. Equation (21) becomes 

On the basis of assumption (iii), this equation implies that Uc is of the order 
of M at most. 

Equation (9) degenerates to 
M ah,lax + P = bC, (21) 

Mh,/X,+ P = v,. (22) 

T h e  first stage 
This is expected to last a time of the order of 1/M2, and so the change 

in v, will be of the order of 1/M and thus negligible. We shall therefore 
take vc as unity during this stage. 

Assumption (ii) applied to (8) and (9) for a point in the boundary layer 
on a radius vector inclined at an angIe 8 to the x-axis yields the equations 

J21-mv' = v " - m h ' - & + p  = 0. 
Both h and v vanish when n = 0, and, when n is large, must approach the 
local core values h, and 1 respectively. From (23), h'-mv =f(T), and 
hence v" - m2v - TJ = mf( T) - P (independent of n) = - m2, since when n is 
large, v = 1 and v" and 6 vanish. The 
solution is 

(23) 

In addition, v = 1 when T = 0. 

X 
exp( - m2T) 
2(rrm2 1 ) 1 ' 2  

v = 1-exp(-mn)+ 

x Jrexp(-u) [ exp ( - -exp ( - cm4nn';)2)] du, 

in which the integral is obviously less than unity. 
The form of the solution when T is a low multiple of l /m2 is given 

closely by the first two terms. The boundary layer then resembles the 
steady-state one in extent, but the velocity rises to v, across every section 
of the layer, The first stage can be considered complete in a time of the 
order of 1/M2, even though l / m 2  is much larger in the obscure regions 
near X and Y. 

Since P, which is of the order of M ,  is negligible in comparison with m2 
except near X and Y,  then f ( T )  = -m, and so h' = m(v- 1). This 
equation and the condition h = 0 at the wall determine the behaviour 
of h, h, and hence h, during the first stage. It can be shown that h, decreases 
steadily from zero, reaching - 1 at the end of the first stage. 

Figure 5 shows the current distribution at the end of the first stage. 
The boundary-layer current per unit length of the pipe is ( U ~ ) ~ ' ~ V ~  at all 
sections of the boundary layer. There is singular behaviour near X and Y ,  
where the currents issue into the core. 

During the first stage, &/an is of the order of m or M ,  except initially, 
when it is of the order of T-@' and tends to infinity. Equation (20) shows 



654 J .  A. Sherclifi 

that P is, as assumed, of the order of M except when T is very small and 
M is an irrelevant variable. 

Figure 5 .  Current flow at the end of the first stage of the entry process. 

The second stage 
We shall see that v in the boundary layers is now of the same order 

as cu,. Hence 6 is, at most, of the order of M ,  and, like P, is negligible in (23). 
T h e  boundary-layer analysis then gives v = - h = v,(l - exp( - mn)}, in 
which 21, varies with time, the extent of the boundary layers remaining 
constant. In  particular ho = -v, and av/& = mv, at the wall. From (20) 
it follows that 

Again P is seen to  be of the order of M .  
the linear equation 

From (22) we may now deduce 

which governs the second stage of the motion. It is obvious that its duration 
will be of the order of 1/M. The  initial condition is v, = 1, and no spatial 
boundary condition is necessary. 

I n  calculating S we use (11) applied in the core, the term j,/u again 
being neglected. If no significant contribution to V,, comes from the 
small obscure regions, it follows that 

s= j l v c d Y ;  0 (26) 

and we observe that P and S are simply proportional during the second 
stage. Equation (25)  may be rewritten 

v 4  
M X o  TT 
2 + 2 = - S ( M T ) ,  
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which has the integrating factor exp(MT/Xo) and the solution 

vc = exp( - MT/Xo)  { 1 + j M T  S(u)exp(u/X,) du} 

4 MT 

0 

= exp( - MT/Xo)  + .n 1 S(u)exp{ (u  - MT)/Xo)  du. 
0 

Application of the condition (26) yields the integral equation 
4 MT 

S ( M T )  = H ( M T )  + - 1 S(u)H(MT- u) du, (28)  
" 0  

where 

A numerical solution of (28) has been calculated, taking steps of 0.1 in MT 
and u. Initially S is unity, the velocity profile being almost wholly radially- 
symmetric (Kolin 1945) ; and finally the steady value 3n2/32 is reached. 
The continuous curve in figure 6 shows the variation of S or 
-(.rra/4~H,v,(~rl)l'~)ap/az as a function of M T ,  or of Mz/Ra if we 
return to the non-linear entry problem by means of the Rayleigh 
approximation, setting x = vo t and taking R to be the Reynolds number 

W P )  = j1 exp( -P/Xo) dY* 
0 

pvoa/q based on pipe radius. 

-. . 
13000 

0.92 I 

0 6  MT 0.8 MI I h a  E W Y  0 2  0 . 9  

Figure 6. The entry process. S or dimensionless pressure gradient as a function 
The experimental points are from measurements of S a t  of MT or MzIRa. 

different values of M, R and z. 

When T is small, the exact variation of S is not physically significant, 
because it is chiefly affected by the behaviour of vc in the obscure regions 
near X and Y ,  and also because the first stage of the motion is still occurring. 
Moreover, the transverse field is not entered instantaneously in practice. 
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From figure 6 it will be observed that S is within 1% of its final steady 
value when x = RaIM. This makes an interesting comparison with the 
result for a rectangular pipe (Shercliff 1956) that departures from the 
ultimate steady velocity profile decrease by a factor l /e  in an entry length 
of the order of RalM. The departure of S from its ultimate value would 
be expected to decay similarly; and for comparison a chain-dotted 
exponential, decreasing by l /e in a length Ra/M but having the terminal 
values appropriate to the circular case, has been added to figure 6. This 
emphasizes the fact that when M is large, entry lengths in rectangular 
pipes are considerably longer than in circular pipes. 

The analysis has not been extended to cases where the entry velocity 
is not uniform. There is no reason for expecting the entry length to be 
very different. The analysis could easily be adapted for any initial variation 
of velocity in the y-direction. If the core velocity varies in the x-direction, 
such variations would probably be eliminated in the first stage by eddy 
currents in the xy-plane. This is suggested by the fact that for flow 
between parallel planes (Shercliff 1956), the entry length is of the order 
of Ra/M2 when the core velocity varies in the x-direction. 

Solutions in the form of series in ascending powers of M ,  valid when M 
is small, could be found, but the interest in such cases is slight. 

Pressure loss at entry 

In addition to the pressure loss due to  the steady pressure gradient, 
there is a pressure loss Sp associated with the profile adjustment from a 
uniform inlet velocity. No allowance will be made for the further large 
pressure loss due to eddy currents at the edge of the transverse field, as 
discussed by Hartmann (1937). 

The drop Sp may be found by integrating the excess of apjaz above 
its steady state value from zero to large values of z. No significant 
contribution comes from the very brief first stage of the motion, despite 
the singularity of P when T = 0. We can therefore use the second-stage 
result 

From (27) we obtain 
P = 4MSlr. (29) 

which, when integrated from Y = 0 to Y = 1, shows that 
aT a ,:Xov, d Y  = 0 

because of (26). Hence 

(:X,,v,  d Y  = const. =G in 

initially, which expresses the equation of continuity since the boundary 
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layers are very thin. Also from (27), we get 

Integration of this equation from Y = 0 to Y = 1 gives 

and hence 

since vc = 3nX0/8 finally, and the required integral has been determined. 
It follows that 

-2  = 0.082, 
27n2 
128 

sp/4pv; = - 

which contrasts with the larger value 0.667 calculated by the Rayleigh 
approximation (Shercliff 1956) for flow into a circular pipe when magnetic 
effects are negligible. When M is large we see that Sp is independent of M .  
A similar result would be expected for flow into rectangular pipes, in 
contrast with the result (Shercliff 1956) that Sp/&~vi = 1/M for flow between 
parallel planes when M is large. In  this case there is no second stage of the 
motion, and Sp is correspondingly smaller. 

5. EXPERIMENTAL WORK 

Experiments have been performed with the main object of verifying 
the theoretical values of S and apjan in the steady flow of mercury in a 
non-conducting circular pipe under a transverse magnetic field at large 
values of M .  The available values of M were limited by the saturation 
of the electromagnet and by the use of a tube small enough to produce 
measurable pressure gradients. Previous experiments (Hartmann and 
Lazarus 1937) reached a value of M of 18 only, and did not consider entry 
effects. 

The apparatus also yielded approximate results for the variation of S 
and ap/az during the entry process, since only at the lower flow rates and 
greatest field intensities could steady conditions be reached within the 
extent of field available, At the lower flow rates and field intensities, the 
measured potential and pressure differences were liable to stray thermal 
and other effects, but nevertheless significant evidence in support of the 
theoretical work was obtained. 

Experimental details 
Figure 7 illustrates the mercury flow circuit schematically. The test- 

section indicated was either of two alternative Perspex pipes, installed in 
the gap of an electromagnet. One of 0.5 in. internal diameter with seven 
pairs of flowmeter-type electrodes at 1-5 in. pitch was used for measure- 
ments of S, and one of 0.25 in. diameter with four flush tappings at 3 in. 

F.M. z x  
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pitch for measurements of ap/az. The electrodes were in fact small flush 
tappings also, this type having proved very successful. Tappings of & in. 
diameter were the smallest that could be satisfactorily cleared of air. In  each 
case the first tapping was 1.5 in. downstream of the edge of the magnet 
pole-faces. 

Figure 7. The fluid circuit (not to scale). 

Steady flow occurred through the test-section under a gravity head of 
mercury maintained by an electromagnetic flat linear induction pump in 
the lower limb of the circuit. The cooler removed heat supplied by the 
pump. The mercury entered the test-sections through a streamlined 
contraction from a settling chamber with wire mesh grilles and preceded 
by a honeycomb to eliminate swirl. The velocity would presumably be 
nearly uniform after the contraction. Horizontal piping was avoided to 
aid the removal of air. 

The flow rate was measured by an electromagnetic flowmeter in the 
upper limit of the circuit. Disturbance of this meter by the electromagnet 
was eliminated by the mild-steel screens shown and, when necessary, by 
taking the means of readings with the electromagnet energized alternatively 
in either direction. 

The  flowmeter was calibrated before and after the experiments with 
the screens in position using the apparatus illustrated in figure 8. The 
mercury flowed through the meter and the control cock under a constant 
head of 5.5 ft,  Runs began when plug G was opened with plug H shut. 
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T h e  mercury rose in the weir tank until a clock was started when contact 
was made with the electrode Z. This was surrounded by a sheath into 
which the mercury entered through a constriction at the bottom. The  
plug H was then opened, admitting mercury to the weigh tank until H was 
shut shortly before the header tank emptied. The  clock stopped when 
contact was made at Z for the second time, there being the same amount 
of mercury in the weir tank at both timing instants. Thus the timed interval 
corresponded to the amount admitted to the weigh tank. After weighing, 
the mercury was blown back to the header tank through another pipe. 
Mercury has the advantage that electrical level indicators are easily arranged. 

HEADER 
TANK 

Figure 8. The flowmeter calibration rig (not to scale). 

T h e  apparatus worked well, even for runs as short as 18sec. The  
flowmeter was found to give a relation between flow rate and output voltage 
which was linear over a wide range and reproducible within i 0.50/, of the 
mean in all positions relative to the upstream bend. This reliable 
calibration is to be attributed chiefly to the narrow fluid passage of the 
flowmeter, 1.10 in. deep and 0.04 in. in the field direction. 

The  electromagnet had pole faces 5 in, by 12 in. and a 1.25 in. gap. 
T h e  water-cooled, low-voltage winding enabled fields of 14 800 oersted 

2 x 2  
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to be attained. There was a sensibly single-valued relation between field 
intensity at the pole-face centre and exciting current for both directions 
of magnetization. Accordingly, the exciting current, measured in a 
temperature-insensitive shunt, was used to indicate field intensity after an 
initial calibration with a Cambridge fluxmeter and search coil had been 
performed. The experimental values of H ,  are considered accurate to 
0.5%, except perhaps at low field intensities. 

The field intensity fell off near the edges of the poles, the fall reaching 
2% at the end electrode positions when the field was at its greatest value. 
A simple proportional correction was applied to voltages measured at the 
end electrodes, but not to the pressure differences. The effect of secondary 
currents at the field edges is difficult to allow for, but is small. 

The test-section diameters were measured to 0.5 yo either by travelling 
microscope or weighing with a known length full of mercury. Mercury 
properties were taken from the Liquid Metals Handbook (Lyon 1952) and 
corrected for temperature changes. 

All signals from the various electrodes were measured to 1 or 2 microvolts 
with a potentiometer, the readings at the higher flow rates or lower fields 
being more uncertain owing to increased unsteadiness of the flow. Care 
was necessary to ensure that the leads to the test-section electrodes did not 
link any of the main field as otherwise its small variations would produce 
large spurious signals. This is a point in favour of permanent magnets 
for flowmeters. Slight thermo-electric effects were observed when the 
magnet was running warm. All runs involving small signals were therefore 
made before the magnet had become warm. 

Pressure gradients were measured with the sensitive manometer 
illustrated in figure 9, This instrument could record pressure differences 
to 0.001 in. of methylated spirits, a better fluid than water which is liable 
to wet non-uniformly. Owing to the presence of a warm magnet, however, 
it was impossible to eliminate stray errors of the order of 0.002 in., despite 
thorough lagging. 

The four pipes from the flush tappings in the test-section led to the 
eight pinchcocks, which enabled the pressure difference between any two 
tappings to be measured, and also the ‘zero’ reading of the manometer 
to be established at any time. The manometer itself consisted of an 
inverted U-tube containing air above spirits. The spirits/mercury menisci 
were kept at fixed levels in reservoirs of large area by taking all readings 
with the airlspirits menisci brought to fixed positions in the two sloping 
parts of the U-tube. It was 
achieved by adjusting the volume of air above the spirits and by altering 
the height of the right-hand sloping tube. Changes in the volume of the 
flexible tube below this had negligible effect, and thermal and other effects 
were reduced by the near-symmetry of the manometer system. A micro- 
meter screw recorded the change in height of the sloping tube. The ‘ zero ’ 
reading was taken repeatedly as it was found to drift during long runs, 
The manometer took about 15 min to reach a steady state. 

This also eliminated surface tension errors. 
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As the micrometer travel was limited, to measure the larger pressure 
differences the manometer was converted to a spirits/mercury one by 
allowing the spirits to rise, expelling the air, until the mercury menisci 
were in the sloping tubes. Readings taken by both methods were consistent. 
The smallest heads that were measured were about 0.05 in., read to the 
nearest 0.001 in. Care was taken to keep the mercury in the circuit at 
ambient temperature to minimize hydrostatic errors in the inclined test 
section. 

X = PINCKOCK 

SILLCV. 
LlHL 

(FROM. MAIN ClaCLJlT] 

Figure 9. The manometer system, showing the air/methylated spirits arrangement 

Observations were taken at four electromagnet field intensities and a 
range of flow rates, each 50% higher than the previous one. The upper 
limit was set by the available head, and the lower by the smallness of the 
signals to be measured by the potentiometer in the presence of stray 
potentials. The lowest signals were measurable only to 2% accuracy. 

(not to scale). 

Experimental results : pressure gradients in the 0.25 in. tube 
Figure 10 shows the readings reduced to dimensionless form, the three 

measured mean gradients between tappings being expressed as a multiple 
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of the theoretical gradient 3rrpH0 ~ , , ( a q ) ~ ~ ~ / S a ,  valid for steady conditions 
when M is very large. Flow rate is represented by R,  the Reynolds number 
based on radius. There are three zones in which the constant-M curves 
are horizontal, rising slowly and rising precipitately. 

Where the experimental points are all marked as crosses, the three 
pressure differences showed a scatter but no clear falling tendency along 
the pipe. The  central pressure difference tended to be slightly high. 
Horizontal lines fit the points reasonably well, and we deduce that this 
zone corresponds to steady flow that is laminar, because the gradient is 
independent of R and density. 

" 

Figure 10. Experimental values of pressure gradient plotted non-dimensionally 
against flow rate at four field intensities. 

At higher flow rates the pressure gradient was observed to fall along the 
pipe as steady'conditions were approached, and here the three successive 
points are marked as arrow tail, cross (air/spirits) or circle (spirits/mercury) 
and arrow head. The  points suggest that the flow was approaching a 
steady state with the same value of ( ~ ~ / ~ z ) / ( 3 r r ~ H 0 v 0 ( u q ) 1 ~ 2 / 8 u )  as for the 
lower flow rates. Chain-dotted curves connect the arrow heads approxi- 
mately. When M was 29, steady conditions were barely obtained even 
at  the lowest flow rate. The  pairs of arrows linked by brackets represent 
the fastest air/spirits readings and the slowest spirits/mercury readings, 
consistent within experimental error. During the runs where a steady 
state was still being approached, the readings both of pressure gradient 
and voltage were particularly prone to wander, even though the total flow 
rate was steady. 

Finally the pressure gradients are seen to rise rapidly at a value of R 
that increases with M. Most of the experimental points are off the figure. 
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With ICI = 29 or 52 the gradients increased along the tube. There seems 
to be no doubt that a transition to turbulence was being observed. The  
rig did not permit an adequate study of the turbulent regime, and this was 
not attempted. It appears that provided R < 250M approximately, 
laminar flow occurred under the conditions of the experiment, and that, 
in particular, there was laminar flow in all the runs with the 0.5 in. tube, 
described in the next section, except perhaps the fastest runs at the lowest 
field strength. 

Figure 11. Ultimate pressure gradient plotted non-dimensionally against M for 
circular and square tubes. 

T h e  four steady values of (8p/8z.)/(37rpH0 v,(a7)1’2/8a) taken from 
figure 10 are plotted against M in figure 11. It appears likely that the 
curve does approach the value unity asymptotically as M increases. 
Experiments at higher values of M would almost inevitably involve the 
use of liquid sodium. Figure 11 also includes an approximate chain-dotted 
curve taken from the experiments of Hartmann & Lazarus (1937) for values 
of M up  to 18. This is clearly compatible with the new resdlts. 

Experimental results : potential dtxerences across the 0.5 in. tube 
Values of S calculated from readings at the seven electrode pairs are 

plotted in figures 12(a)  and 12(b) for values of M of 239 and 58. Similar 
intermediate results were obtained with M equal to 156 and 102. Curves 
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have been added to illustrate the trend of the results as R varies. 'The 
caption ' entry ' refers to the leading edge of the pole faces. 

Attention is directed first to figure 12(a), since the readings are most 
reliable at  the highest field strength. It is apparent that at the lower flow 
rates steady conditions were reached within the test-section, and that 
S then assumed the approximate value 0.92, confirming theoretical 
expectations reasonably well. At higher flow rates, decreasing values 
of S closer to unity occurred, as expected, because the velocity profile was 
not fully distorted from its presumed initial axial symmetry in the length 
available. 
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0 1470 0 6400 
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24400  
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Figure 12. The fall in sensitivity along the 0.5 in. pipe. 
(a) M = 239, (b) M = 58. 

The accuracy fell as the field was reduced owing to the smallness of the 
quantities measured. Nevertheless figure 12 (b)  is consistent with theoretical 
expectations. Another difficulty was the unsteadiness of the flow in runs 
where the settling process was protracted. It was impossible to achieve 
precise reproducible trends in these cases. 
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The entry process 
The scatter of the results makes a close experimental check of the entry 

theory difficult. I t  is also complicated by the uncertainty of the entry 
conditions. As the streamlined contraction terminated about 1.25 in. before 
the edge of the pole-faces, there would presumably be some distortion of the 
velocity profile caused by the fringe flux before the main field was entered, 
and moreover the secondary currents at the field edges tend to distort the 
velocity profile. Nevertheless, in order to check the entry theory (itself 
approximate) we shall assume conventionally that the velocity was uniform 
at the section opposite the edge of the pole faces, and measure x from this 
section. 

Experimental points for values of M of 239 and 58 have therefore been 
plotted in figure 6, x being measured from the edge of the pole faces. 
Dotted mean curves have been added. The theoretical entry length is 
seen to be correct in order of magnitude, if considerably overestimated. 
The experimental points also tend to confirm that the sensitivity S started 
to fall from unity while z was still negative. 

A closer investigation of the entry process would require an elaborate 
technique to secure known, standard entry conditions. The dependence 
of S on the velocity profile provides a useful technique for studying such 
phenomena as the pipe-entry process, unless the velocity profile is radially 
symmetric. 

Equation (28) indicates that ap/i3z and S should be mutually proportional 
at high values of M (except perhaps when the entry length is so long that 
the ficst stage with its higher value of ap/az becomes important). There 
is rough confirmation of this result in that apjaz and S both fall by amounts 
as large as 8% during the settling process. Figure 6 shows that S is usually 
within 1% of the steady state value when MxIRa = 1. A dotted curve 
for which RIM = 72, the value of xla which corresponds to a point 
midway between the last two pressure tappings in the 0.25 in. tube, has 
therefore been added to figure 10. It is found to connect points where 
ap/ax is roughly 1% above the steady state value. Thus both sets of 
readings give entry lengths of the same order of magnitude. 

As M increases, the steady state value of S approaches its asymptotic 
value more rapidly than (i3p/i3z)/(37rpHo vo(q)1’2/8a) tends to unity, simply 
because S (unlike i3p/ax) only varies through a small range over the whole 
range of M .  It was clearly impossible to find the variation of S with M 
from the present experiments. Hartmann & Lazarus did not. measure 
potentials. 

For comparison, a theoretical curve (Shercliff 1953) showing the 
variation of the steady (ap/az)/(pHo vo(aq)1’2/a) against M for a square 
pipe of side 2a, with the field parallel to a side, has been added to figure 11. 
This curve approaches the value unity less rapidly than the experimental 
curve for the circular pipe, presumably because the regions where 
the boundary layers are thick are smaller in circular than in square 
pipes. 
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6. PRACTICAL IMPLICATIONS 

It has been shown that distortion of the velocity profile can cause the 
sensitivity of a flowmeter of circular section to fall from the Kolin value 
by about S%, provided the fluid traverses the magnetic field for a distance 
at least equal to RalM before encountering the electrodes, the theoretical 
distance being somewhat larger than the observed ones. It is important 
to consider whether the fall will occur commonly in practice. Typical 
figures for a small flowmeter of 1 in. bore bearing liquid sodium at 300" C 
at 100 cm/sec in a field of 3000 oersted are R = 3.3 x lo*, M = 500 and 
RIM = 66. Since the field would probably extend for 2 or 3 rather than 
33 diameters upstream of the electrodes, we see that only at much lower 
flow rates would appreciable distortion of the velocity profile and fall in 
sensitivity occur. Variation of sensitivity due to upstream disturbances 
or edge effects is likely to be much more serious (Shercliff 1954, 1955). 

Further experiments to test the variation of S with wall conductivity 
would be interesting, but also very difficult owing to the importance of 
contact resistance. 

The  experiments described above were carried out with the help of 
facilities provided at Cambridge University by the Atomic Energy Research 
Establishment, Harwell. 
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